Genetics Symposium Paper Page

 SYMPOSIUM

Slicing and Dicing small RNAs facilitates Epigenetic Effects

Symposium Paper Selection Page

The topic for this year’s Symposium is “Slicing and Dicing small RNAs facilitates Epigenetic Effects”.

We parsed the topic in four sub-topics: heterochromatin remodeling, transcriptional silencing, RNA silencing applications, and structure function of silencing machines.

We also provide a list of research articles within all four topics.  We tried to select seminal research articles whenever possible and for complex topics we selected Opinion and or Review articles.

For your Symposium Presentation you must select ONE Primary Research Articles listed in any of the four categories and make a comprehensive presentation by enhancing your topic with one or more papers selected from the Second Tier of Review and Opinion Articles.

Paper Selection Page

Primary Research Articles

Heterochromatin Remodeling

HR1.   Taglini, F., et al., Mkt1 is required for RNAi-mediated silencing and establishment of heterochromatin in fission yeast. Nucleic Acids Res, 2020. 48(3): p. 1239-1253.

HR2.   Mugat, B., et al., The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nat Commun, 2020. 11(1): p. 2818.

HR3.   Li, Y., et al., MicroRNA-like milR236, regulated by transcription factor MoMsn2, targets histone acetyltransferase MoHat1 to play a role in appressorium formation and virulence of the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol, 2020. 137: p. 103349.

HR4.   Tabuchi, T.M., et al., Caenorhabditis elegans sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis. Nat Commun, 2018. 9(1): p. 4310.

HR5.   Fields, B.D. and S. Kennedy, Chromatin Compaction by Small RNAs and the Nuclear RNAi Machinery in C. elegans. Sci Rep, 2019. 9(1): p. 9030.

Transcriptional Silencing

TS1.    Wang, Y., et al., Insects defend against fungal infection by employing microRNAs to silence virulence-related genes. Proc Natl Acad Sci U S A, 2021. 118(19).

TS2.    Xu, F., et al., A Cytoplasmic Argonaute Protein Promotes the Inheritance of RNAi. Cell Rep, 2018. 23(8): p. 2482-2494.

TS3.    Thakore, P.I., et al., RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat Commun, 2018. 9(1): p. 1674.

TS4.    Kaletsky, R., et al., C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature, 2020. 586(7829): p. 445-451.

TS5.    Qiu, Y., et al., Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Sci Adv, 2020. 6(6): p. eaax7989.

RNAi Silencing Applications

SA1.   Honda, S., et al., Establishment of Neurospora crassa as a model organism for fungal virology. Nat Commun, 2020. 11(1): p. 5627.

SA2.   Till, P., et al., A long noncoding RNA promotes cellulase expression in Trichoderma reesei. Biotechnol Biofuels, 2018. 11: p. 78.

Structure Function of Silencing Machines

SF1.    Jo, M.H., et al., Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs. Mol Cell, 2015. 59(1): p. 117-24.

SF2.    Svoboda, P., Key Mechanistic Principles and Considerations Concerning RNA Interference. Front Plant Sci, 2020. 11: p. 1237.

SF3.    Ding, S.W., et al., Antiviral RNA interference in mammals. Curr Opin Immunol, 2018. 54: p. 109-114.

SF4.    Liu, Z., et al., Cryo-EM Structure of Human Dicer and Its Complexes with a Pre-miRNA Substrate. Cell, 2018. 173(5): p. 1191-1203 e12.

Second Tier of Review and Opinion Articles

Structural Matters – Dicer, Argonaut and More

2T1     Paturi, S. and M.V. Deshmukh, A Glimpse of “Dicer Biology” Through the Structural and Functional Perspective. Front Mol Biosci, 2021. 8: p. 643657.

General Silencing Mechanisms

2T2.    Li, J., et al., An Overview on Identification and Regulatory Mechanisms of Long Non-coding RNAs in Fungi.Front Microbiol, 2021. 12: p. 638617.

2T3.    Erdmann, R.M. and C.L. Picard, RNA-directed DNA Methylation. PLoS Genet, 2020. 16(10): p. e1009034.

2T4.    Yao, Q., Y. Chen, and X. Zhou, The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol, 2019. 51: p. 11-17.

2T5.    Alessio, E., et al., A Single Cell but Many Different Transcripts: A Journey into the World of Long Non-Coding RNAs. Int J Mol Sci, 2020. 21(1).

2T6.    Janssen, A., S.U. Colmenares, and G.H. Karpen, Heterochromatin: Guardian of the Genome. Annu Rev Cell Dev Biol, 2018. 34: p. 265-288.

2T7.    Rani, V. and R.S. Sengar, Biogenesis and mechanisms of microRNA-mediated gene regulation. Biotechnol Bioeng, 2022. 119(3): p. 685-692.

2T8.    Olina, A.V., et al., Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes.Biochemistry (Mosc), 2018. 83(5): p. 483-497.

2T9.    Maillard, P.V., et al., Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J, 2019. 38(8).

2T10.  Jonas, S. and E. Izaurralde, Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet, 2015. 16(7): p. 421-33.

2T11.  Frolows, N. and A. Ashe, Small RNAs and chromatin in the multigenerational epigenetic landscape of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci, 2021. 376(1826): p. 20200112.

2T12.  Corbett, A.H., Post-transcriptional regulation of gene expression and human disease. Curr Opin Cell Biol, 2018. 52: p. 96-104. 

Kingdom and Inter-species Silencing Mechanisms

2T13.  Till, P., R.L. Mach, and A.R. Mach-Aigner, A current view on long noncoding RNAs in yeast and filamentous fungi. Appl Microbiol Biotechnol, 2018. 102(17): p. 7319-7331.

2T14.  Nicolás, F.E., et al., 5 Small RNAs in Fungi, in Genetics and Biotechnology. 2020. p. 105-122.

2T15.  Mathur, M., A. Nair, and N. Kadoo, Plant-pathogen interactions: MicroRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics, 2020. 112(5): p. 3021-3035.

2T16.  Islam, W., et al., Plant microRNAs: Front line players against invading pathogens. Microb Pathog, 2018. 118: p. 9-17.

2T17.  Huang, C.Y., et al., Small RNAs – Big Players in Plant-Microbe Interactions. Cell Host Microbe, 2019. 26(2): p. 173-182.

2T18.  Hua, C., J.H. Zhao, and H.S. Guo, Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions. Mol Plant, 2018. 11(2): p. 235-244.

2T19   Hewezi, T., Epigenetic Mechanisms in Nematode-Plant Interactions. Annu Rev Phytopathol, 2020. 58: p. 119-138.

2T20.  Hall, R.A. and E.W.J. Wallace, Post-transcriptional control of fungal cell wall synthesis. Cell Surf, 2022. 8: p. 100074.

2T21.  Glastad, K.M., B.G. Hunt, and M.A.D. Goodisman, Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity. Annu Rev Entomol, 2019. 64: p. 185-203.

2T22.  Kong, L., et al., A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection. Curr Biol, 2017. 27(7): p. 981-991.

2T23.  Axtell, M.J., Second to None: Plant Secondary siRNAs as Defensive Agents against Phytophthora. Cell Host Microbe, 2019. 25(1): p. 7-