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A B S T R A C T

Plants are attacked by a large number of pathogens. To defend against these pathogens, plants activate or repress
a vast array of genes. For genetic expression and reprogramming, host endogenous small RNAs (sRNAs) are the
key factors. Among these sRNAs, microRNAs (miRNAs) mediate gene regulation through RNA silencing at the
post-transcriptional level and play an essential role in the defense responses to biotic and abiotic stress. In the
recent years, high-throughput sequencing has enabled the researchers to uncover the role of plant miRNAs
during pathogen invasion. So here we have reviewed the recent research findings illustrating the plant miRNAs
active involvement in various defense processes during fungal, bacterial, viral and nematode infections.
However, rapid validation of direct targets of miRNAs is the dire need of time, which can be very helpful in
improving the plant resistance against various pathogenic diseases.

1. Introduction

Food security is continuously being challenged due to various
virulent crop pathogens [1]. These pathogens may include fungi, bac-
teria, viruses, nematodes and other parasites. For defense against these
pathogens plants have evolved small RNAs (sRNAs) playing an active
role in managing immunity against pathogen attack [2,3]. These sRNAs
are classified as small interference RNAs (siRNAs) and micro RNAs
(miRNAs). Among them, the miRNAs (21 nucleotides in length) are
considered more diverse, more active and are more in the attention of
the researchers worldwide for enhancing crop immunity against plant
pathogens [4–7]. miRNAs were first discovered in Caenorhabditis elegans
[8]. With the passage of time, miRNAs and their roles in the plant life
cycle are being described [9]. Modern bioinformatics, genetics, bio-
chemical and molecular approaches lead the researcher to investigate
regulatory functions of miRNAs in plant pathogenic interactions [10].
Next-generation sequencing methods have elaborated the miRNAs
functioning through transcription, induced silence complex loading,
processing, turnover and decay [11]. All of these processes are regu-
lated by many other factors such as RNA editing, genetic mutations,

complementarity, target availability and other temporal effects thus
ensuring the versatility of miRNA functions and activities. miRNA un-
dergoes RNA polymerase II-dependent transcription [12–14] followed
by recognition of the single-stranded RNAs by Dicer-Like1 (DCL1) in
plants [15–17]. This recognition further leads towards the conversion
of the primary miRNAs (pri-miRNAs) to the precursor miRNAs (pre-
miRNAs) and finally to the miRNA/miRNA* duplexes [18,19]. miRNAs
are then dissociated from duplexes and are further incorporated into
Argonaute (AGO)-associated miRNA-induced silencing complexes
(miRISCs; preferentially AGO1-associated miRISCs) [20,21]. Regarding
biogenesis of miRNAs, several studies are available [22–27]. Each step
of miRNA biogenesis is influenced and surveillanced by many cis- and
trans-factors. These may include chromatin marks and specific tran-
scription factors (TFs) [28]. Although sequences and structures of
miRNAs determine their integral efficiency, yet several spatiotemporal
factors also regulate miRNA precursors processing in plants [29,30].
Furthermore, there is competition between miRNAs and other sRNAs
for their loading into AGO complexes which sometimes results in non-
uniform loading of various miRNAs into AGO1-associated miRISCs
[31]. Expression of a particular gene in plants via recognition through
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transcripts is further influenced by miRNA guided miRISCs. The process
is smoothly performed and involve several complementary events for
ensuring the affectivity upon regulatory processes of miRNAs [32]. For
instance, complementarity and target abundance determines the de-
gradation rate of miRNAs [33–35]. Completion of one cleavage of a
specified target may or may not result in the degradation of miRISC
because the particular miRISC have the survival ability or regeneration
ability through a released miRNA [36,37]. This survival or regeneration
can lead towards another round of target cleavage. The completion
speed of this particular process is dependent upon the complementarity
of a target. The turnover rate is reduced for miRNAs sequestered by
bulge targets [38]. All these events advocate vigorous regulatory ac-
tivities of miRNAs. miRNAs are explicitly employed by plants in re-
sponse to pathogenic attacks. Therefore, we have reviewed plant de-
fense responses aided by diversified miRNAs against fungal, bacterial,
viral or nematode attack. The review includes topical research analyses
illustrating miRNAs as defenders against various pathogens.

2. Plant defense mechanism against pathogen attack; miRNA
prospective (an overview)

Plants are the source of food and survival for all types of organisms
[39–42]. Among the plant pathogens, virus, bacteria, fungi and nema-
todes are more prominent as they cause economically important dis-
eases. Theses pathogens either directly destroy the plant cells by in-
serting their hyphae e.g., fungi or utilize host machinery for their
reproduction [43,44] as well as further distribution i.e., viruses
[45–51]. To defend against these pathogens, plants have evolved sev-
eral mechanisms such as structural defense, chemical defense, hy-
persensitive response and systemic acquired resistance. One of these
sophisticated mechanism involves the activation of self-defense re-
sponses through the involvement of miRNAs due to absence of some
specialized plant cells with immune functions [52]. This involves the
recognition of pathogen-associated molecular patterns (PAMPs), for
pathogen recognition and triggering the first line of defense, i.e., pri-
mary immune defense [53]. In response, the pathogens have also de-
veloped particular effectors which suppress this first defense line of
plants via interrupting the signal transition of PAMP-triggered im-
munity (PTI) [54]. To counter this pathogen strategy, plants have
evolved the second line of defense called effector-triggered immunity
(ETI) regulated via various resistance (R) proteins [55–57]. These R
proteins are more precise and accurate in inhibiting the growth of the
bacterial pathogen effectors, such as avirulence (avr) proteins [58–60].
In response, miRNAs are induced or repressed to modulate and regulate
the gene-expression through gene silencing at transcriptional or post-
transcriptional level via alteration in various hormones such as auxin,
abscisic acid (ABA) and jasmonic acid (JA). Diverse miRNAs actively
participate in defense against various pathogens (Table 1). The detailed
response via plant miRNAs is explained as under.

3. Response of plant miRNAs to fungal infections

The modern technology has enabled researchers to explain the de-
fensive roles of plant miRNAs against various fungal disease attacks.
Yin et al. [95] identified various miRNAs endowing resistance against
Verticillium dahlia in two cotton cultivars, i.e., Hai-7124 and Yi-11. They
documented the expression profiles of 65 miRNAs which show their
altered expression in response to the Verticillium. Among them, Ptc-
miR482, Ptc-miR1444 and Ptc-miR1448 were specified to cotton cul-
tivars which indigenously exhibited the PPO (Polyphenol oxidase) gene
cleavage along with the other disease resistance-related genes for reg-
ulating biotic and abiotic stress resistance [96,97]. In fungal infected
plant roots, miR482 and miR1448 were down-regulated showing in-
creased PPO along with the disease resistance. Correspondingly [98],
several miRNAs were identified from rice cultivars with differential
expressions upon the infection of Magnaporthe oryzae under standard

normal conditions. These miRNAs exhibited a negative expression of
some target genes via real-time RT-PCR assay. Further analysis revealed
over-expressed miR160a and miR398b along with up-regulation of
defense-related genes and H2O2 accumulation at the infection site in
transgenic rice. This significantly increased the resistance to Magna-
porthe oryzae [98]. Dothiorella gregaria causes gummosis and rot in Po-
pulus beijingensisis. In infected Populus plants, Chen et al. [81] identified
74 conserved miRNAs along with 27 novel miRNAs from 37 different
miRNA families. Further sequencing explained that out of the ten out of
74 conserved miRNAs were over-expressed while miR472, miR1447
and miR1448 targeted the disease resistance genes [99]. It was docu-
mented that the infected plants displayed enhanced production of
miR1142 and miR1447 while genesis of miR472 and miR1448 was
significantly reduced. Contrarily, Lu et al. [100] explained the induc-
tion of pbe-miR156a-e in Dothiorella gregaria infected Populus plants
and repression of miR156 in Cronartium quercuum infected stem of lo-
blolly pine. Recently, Salvador-Guirao et al. [101] investigated the role
of miR773 in modulating resistance to infection by fungal pathogens in
A. thaliana. They concluded that interference with miR773 activity by
target mimics (in MIM773 plants) and concomitant up-regulation of the
miR773 target gene METHYLTRANSFERASE 2 (MET2) considerably
increased resistance to Plectosphaerrella cucumerina, Fusarium oxysporum
and Colletototrichum higginianum infection. From these results, we can
hypothesize that same miRNAs may show diverse functions in varying
plant species under the stress of different pathogen attack (Fig. 1).
Therefore, to better understand the regulatory role of miRNAs on their
target genes during fungal infection, further experimental validation is
indispensable.

Plant hormones also play their active role in plant immunity. It has
been witnessed that the relationship between miRNAs and phyto-
hormone responses improves understanding of miRNAs and hormone
action in disease control [102,103]. First discovery regarding miRNAs
(miR393) involvement in the regulation of auxin signaling pathway was
discovered in anti-bacterial response of Arabidopsis thaliana through
active contribution in PTI [104]. This laid the foundation to exploit PTI
in various plants against pathogen attack through induction of miRNAs
[105]. This was achieved via incorporation of avirulent pathogens in
Arabidopsis, which resulted in hypersensitive response causing the
down-regulation of miR398 during bacterial infections [70]. The same
phenomenon was observed in anti-fungal infections as chitin is con-
sidered as one of the most important structural components of fungi
[106,107]. Chitin triggered immunity through delivery of effectors into
the plants against Cladosporium fulvum infections was demonstrated
through the involvement of Ecp6, i.e., the LysM domain–containing
effector proteins [108–110]. Fungal chitin treated tomato and tobacco
mutants showed enhanced ROS (reactive oxygen species) production
along with the elevated levels of Cu/Zn SOD proteins under control
conditions. Increased ROS detoxification was observed due to elevated
SODs. Regulation of miR398 results in reduced CSD1 and CSD2 mRNA
levels thus conferring its role in fungal infections [111]. Fungal historia
can also deliver effectors into plant intercellular spaces [112] but the
enzymatic activity of these effectors have been demonstrated for only a
few interacting miRNAs. A large number of miRNAs which play as a
defender against various fungal pathogens remain still unknown.

The auxin is critically responsive towards biotic and abiotic stresses
in plants. The enhanced auxin-mediated response in wheat cultivars
against powdery mildew infection was observed upon the down-reg-
ulation of transport inhibitor response 1 (TIR1), i.e., a negative reg-
ulator of auxin signaling. Moreover, up-regulation of miR393 which
targets the TIR1 auxin receptor was found in Blumeria graminis infected
Triticum aestivum, thus initiating defense against the invading fungus
[113]. Three independent responses (lignin biosynthesis, hormone
signaling, and protein biosynthesis) in Puccinia graminis infected wheat
plants were regulated via targeting various transcription factors
through eight miRNAs namely miR159, miR164, miR167, miR171,
miR408, miR444, miR1129 and miR1138. Among them, miR167,
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miR171, miR444 were specified to regulate various hormonal signaling
pathways by targeting the NAC1-, ARFs-, and MADS-box respectively
[114].

4. Response of plant miRNAs to bacterial infections

The involvement of plant miRNAs in defense against pathogen was
primarily observed during plant-bacteria interactions. Rapid induction

of miRNA393 was noticed against bacterial peptide flg22 infection in
Arabidopsis [115,116]. The particular miRNA repress the auxin sig-
naling by stabilizing the Aux/IAA proteins via targeting TIR1, AFB2 and
AFB3 mRNAs, i.e., the F-box family genes [117]. This over-expression
of miR393 reduces the growth of Pseudomonas syringae pv. tomato
DC3000. Corresponding suppression of auxin signaling is also due to
production of salicylic acid (SA) thus indirectly contributing to the anti-
bacterial defense in plants [118,119]. Moreover, in Arabidopsis,

Table 1
Defensive role of miRNAs against various pathogens.

miRNAs Defensive role in
plant specie

Name of Pathogen Pathogen
Type

Target gene References

amiR159 Arabidopsis TYMV Virus P69, HC-Pro [61]
miR159a N. benthamiana PPV Virus P1/HC-Pro [62]
miR167b N. benthamiana PPV Virus P1/HC-Pro [62]
miR171a N. benthamiana PPV Virus P1/HC-Pro [62]
miR393 Arabidopsis Pseudomonas syringae Bacteria TIR1 [63]
miR825 Arabidopsis P. syringae Bacteria Remorin, zinc finger homeobox family,

frataxin-related
[64]

miR393 Arabidopsis P. syringae Bacteria AFB2, AFB3 [64]
miR167 Arabidopsis P. syringae Bacteria ARF8 [64]
amiR171 N. tabacum CaMV Virus 2b [65]
miR1885 Brassica napus TuMV Virus TIR–NBS–LRR [66]
Pre-miR171a Arabidopsis CMV Virus 3′-UTR [67]
miR1448 Populus trichocarpa Botryosphaeria dothidea Fungus S-conjugate, ABC transporter, ATP-

binding cassette transport protein
[68]

Pre-miR159 Arabidopsis TuMV Virus P69 [69]
miR398 Arabidopsis P. syringae Bacteria COX5b.1 [70]
miR773 Arabidopsis P. syringae Bacteria MET2 [71]
miR398 Arabidopsis P. syringae Bacteria CSD1, CSD2 [71]
miR160 Arabidopsis P. syringae Bacteria ARF10, ARF16, ARF17 [71]
miR159a N. tubacum PVY Virus HC-Pro [72]
miR167b N. tubacum PVX Virus TGBp1/p25 [72]
miR171a N. tubacum PVX Virus TGBp1/p25 [72]
Pre-miR159a Solanum lycopersicum CMV Virus 2a, 2b [73]
miR159 Arabidopsis P. syringae Bacteria MYB33, MYB65, MYC101 [73]
miR167 Arabidopsis P. syringae Bacteria ARF6 [73]
miR408 Arabidopsis P. syringae Bacteria Copper protein plantacyanin and

copper ion binding protein genes
[73]

miR390 Arabidopsis P. syringae Bacteria TAS3 [73]
miR393b Arabidopsis, N.

benthamiana
P. syringae Bacteria MEMB12 [74]

miR482 Solanum lycopersicum TCV, CMV, TRV Virus NBS-LRR [75]
Pre-miR159a N. benthamiana WSMoV Virus L replicase gene (Conserved motifs) [76]
miR395 Triticum WSMV Virus Conserved region [77]
pre-miR319a Vitis vinifera GFLV Virus Coat protein (CP) [78]
miR160 Pinus taeda Cronartium quercuum f. sp. fusiforme Fungus Auxin response factor, Aux/IAA [79]
miR482 Cotton V. dahliae Fungus Disease resistance protein [80]
miR1447 Populus beijingensis Dothiorella gregaria Fungus Disease resistance protein [81]
miR1448 Cotton V. dahliae Fungus Disease resistance protein, [80]
miR1448 P. beijingensis D. gregaria Fungus Glutathione [82]
miR1450 P. trichocarpa B. dothidea Fungus Leucine-rich repeat [82]
miR160 P. trichocarpa B. dothidea Fungus Auxin response factor, Aux/IAA [82]
amiR-AV1-1 Tomato ToLCNDV Virus AV1 and AV2 [83]
pre-miR169a N. benthamiana CLCuBuV Virus V2 gene [84]
pre-miR319a S. lycopersicum ToLCV Virus AV1 and AV2 (coat protein) [83]
miR5300 S. lycopersicum F. oxysporum Fungus Solyc05g008650, tm-2 [85]
miR472 Arabidopsis P. syringae Bacteria CC-NBS-LRR [86]
pre-miR319a N. benthamiana PVY Virus CI, NIa, NIb, CP [87]
miR6019/

miR6020
N. tabacum TMV Virus TIR-NBS-LRR [88]

miR396a-5p Solanaceae P. infestans Bacteria GRF [89]
pre-miR171 N. benthamiana WDV Virus Conserved region [90]
pre-miR528 Oryza sativa RSV, RBSDV Virus Middle segment, 30 end [91]
pre-miR159a N. benthamiana CBSV, UCBSV Virus P1, P3, CI, Nib and CP [92]
pre-miR159a N. benthamiana TSWV Virus N, NSs [93]
miR396 Arabidopsis Plectosphaerella cucumerina, Botrytis cinerea, F. oxysporum f.

sp. Conglutinans, Colletotrichumhigginsianum, P. cucumerina, B.
cinerea

Fungus GRF [94]

Abbreviations for virus names include in this table are: TuMV; Turnip mosaic virus, TCV; Turnip crinkle virus, CMV; Cucumber mosaic virus, TRV; Tobacco rattle virus, RSV; Rice stripe
virus, RDV; Rice dwarf virus, TMV; Tobacco mosaic virus, CaMV; Cauliflower mosaic virus, ToLCNDV; Tomato leaf curl new Dehli virus, TYMV; Turnip yellow mosaic virus, PPV; Plum pox virus,
PVX; Potato virus X, PYV; Potato virus Y, WSMoV; Watermelon silver mottle virus, WSMV; Wheat streak mosaic virus, GFLV; Grapevine fanleaf virus, CLCuBuV; Cotton leaf curl Borewala virus,
ToLCV; Tomato leaf curl virus, RBSDV; Rice black streaked dwarf virus, WDV; Wheat dwarf virus, CBSV; Cassave brown streak virus, UCBSV; Uganda cassava brown streak virus, TSWV; Tomato
spotted wilt virus.
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synergism among miR393 and SA pathway significantly contribute to
enhanced tolerance against bacterial infections [120,121]. Further in-
vestigation affirmed that increased accumulation of miR393 upon
bacterial infection down regulate MEMB12 (SNARE) gene encoding
vacuole-localized protein involved in membrane fusion. Mutants defi-
cient in MEMB12 presented extraordinary levels of exocytosis of the
PR1 protein regulated via AGO2 [122,123]. Manipulation of host-
mediated miRNAs has been observed upon the infection of various
bacterial diseases (Fig. 2). Down-regulating the accumulation of pri-
miR393 which is a precursor of miR393 have been documented due to
the bacterial effector (AvrPtoB) [123]. This may be due to the in-
volvement of various interfering factors during the processing of
miRNA precursors. Bacterial implication regarding suppression of var-
ious RNA silencing pathways during anti-bacterial defense is the same
strategy developed by viruses via utilization of several protein sup-
pressors for interference with the silencing machinery [124,125].
Fahlgren et al. [64] reported the induction of several miRNAs during
bacterial infection in Arabidopsis via large-scale expression profiling
analysis. They found that miR160 and miR167 target the auxin-related
genes, thus showing their active involvement in plant defense. They
further mentioned about the down-regulation of miR162 and miR168
upon bacterial infections. These miRNAs directly target the AGO1 and
DCL1 which modulate the setting up of miRNA pathways, thus insuring
their activities during the bacterial defense. Interestingly, another
miRNA (miR825) which is not involved in targeting any of the defense-

related genes also exhibit down-regulation upon bacterial infection
[126]. The activities on miR825 should be specifically targeted and
researched upon as the particular miRNA may be playing any other
defense-related regulatory role. Deep sequential analysis technique has
helped the researcher to uncover various other miRNA families that are
involved in anti-bacterial defense [127]. For example, Zhang et al. [73]
described the expression of 20 diverse miRNA families upon the in-
fection of different Pseudomonas strains in Arabidopsis. Most of these
families targeted the genes directly or indirectly linked with the pro-
duction and signaling pathways of various hormones such as SA, Jas-
monic acid (JA) and Abscisic acid (ABA). The involvement of these
hormone pathways in anti-pathogenic defense has been well docu-
mented [128–130]. For example, SA signaling pathways regulates the
anti-biotrophic pathogen defense in plants while positive regulation of
JA triggers and regulates the anti-necrotrophs defense [131–133]. On
the other hand, ABA can have both negative and positive effects on
pathogen resistance [134,135]. Thus, miRNAs facilitate the fine tuning
of defense responses rather than targeting the plant immune system
directly. Equivalently, massive changes in miRNA transcriptome have
been observed in the Xanthomonas axonopodis pv. manihotis infected
cassava plants [136,137]. Auxin response factors are the targets of
mostly up-regulated miRNAs while several disease resistance genes are
regulated through down-regulated miRNAs. On a similar note, callose
deposition is enhanced by miR160a over-expression during defense
response but miR398b and miR733 are negatively regulated during the

Fig. 1. Plant miRNAs regulate PTI and ETI in response to fungal infections. Fungal elicitors trigger the accumulation of different miRNAs leading towards the changes in gene expression.
Higher accumulation of miR7695, miR168 and miR823 is observed during fungal infections, while miR528, miR1879, miR9863, and miR482 are down-regulated to improve plant
resistance.
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bacterial infections [71]. Moreover, investigation of the tumors caused
by the infection of Agrobacterium tumefaciens revealed that miR167 and
miR393 were down-regulated and the mutants which were deficient in
these RNA silencing specific miRNAs showed hyper-susceptibility to
bacteria. Summarizing the miRNA involvement in anti-bacterial de-
fense [138]. It has been noted that although miRNAs are one of the vital
components of various defense-related pathways, yet their target spe-
cificity and direct contributions still need to be explored in most of the
cases.

5. Response of plant miRNAs to virus infections

Diverse types of miRNAs are produced by various viruses which
they employ for their offensive attack to generate infection of the plant
cells. Oppositely, plants have discovered their defense via involving
their miRNAs which occur naturally and are produced in response to
any virus or viroid attack [139,140]. Initial evidence documented that
Arabidopsis mutant dcl1 showed the least susceptibility to RCNMV in-
fection [141]. As DCL1 plays a preliminary role during the processing of
pre-miRNAs, so the hypothetical findings support regarding the en-
dogenous exploitation of miRNA through suppression and redirection of

host gene expression. Interestingly, viral mRNA translation and RNA
stability are not directly detected to be affected by miRNAs [142].
Further unveiling this phenomenon, it is assumed that miRNAs redirect
viral RNAs towards replication sites. Moreover, conclusive evidences
are piling up every day regarding viral gene silencing to enhance the
plant immunity. Since miRNAs and siRNAs share many features in
common, therefore, it is hypothesized that miRNAs may also be in-
volved as silencing invaders. For example, miR171 directed an RNAi
like process by exhibiting cleavage of mRNAs encoding scarecrow-like
transcription factors in Arabidopsis [143]. Similarly, induction of bra-
miR1885 was observed in Turnip mosaic virus (TuMV) infected Bras-
sica [144,145]. Further analysis revealed that Toll/interleukin-1, nu-
cleotide-binding site-leucine-rich repeat (TIR-NB-LRR) disease re-
sistance gene was targeted by bra-miR1885 which explains about the
possible origin of bra-miR1885 from inverted duplication events of TIR-
NB-LRR coding genes. Correspondingly, miRNA profiling was carried
out through deep sequential analysis of rice plants infected by Rice
dwarf virus [RDV; double stranded (ds) RNA virus] and Rice stripe virus
(RSV; RNA virus) [146,147]. Results revealed that RSV infection
showed triggered miRNA accumulation along with the enhanced ex-
pression level of rice DCL and AGO genes. On the contrary, RDV

Fig. 2. Plant miRNAs actively participate in defense against bacterial attack through regulating disease resistance by fine tuning of various plant hormones. Upon the infection, plants
detect PAMPs and modulate the accumulation of miRNAs. miRNAs, such as miR160, miR167 and miR393 regulate disease resistance by fine-tuning plant hormone networks, while other
miRNAs (miR482/miR472) regulate the activation of R protein. miR393b* which is the pairing strand of miR393, enhances plant immunity via promoting exocytosis of antimicrobial
protein.
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infection showed an up-regulation of OsRDR genes. However, it is still
not clarified that either up-regulation of AGO, DCL or RDR genes play
any role in plant defense or not. Similar studies were reported regarding
the miRNA expression profiling upon the infection with the Oilseed
rape mosaic tobamovirus (ORMV) in Arabidopsis [148]. He further
documented that upon infection of the particular tobamovirus, higher
accumulation of miRNAs was recorded however, no or little transcrip-
tional changes were observed in the mRNA targets thus revealing the
least involvement of mature miRNAs regarding defense against ORMV
infected Arabidopsis plants. On a hypothesis, Chen et al. [149] con-
ducted a deep sequential analysis of Cucumber mosaic virus (CMV) and
the N5 strain of Tomato mosaic virus (ToMV) challenged tomato plants.
The results were quite interesting as more than 85% miRNAs showed
altered expressions but the study was not further followed to explore
more about the role of these miRNAs in defense against the subjected
viruses thus the exact role of these miRNAs is still elucidated. Similarly,
another study focused upon the expression profiling of miRNAs in
grapevine plants which were infected by Grapevine vein-clearing virus
[150]. The results exhibited the down-regulation of miR169 and
miR398 while up-regulation of miR168 and miR3623 upon viral in-
fection. However, no clear evidence was recorded regarding the in-
volvement of these miRNAs in disease resistance. Thus, more defense
specified involvement of miRNAs is needed to be explored.

6. Response of plant miRNAs to nematode infections

Resistance to root-knot nematodes is mediated through expression
of dsRNA in infected plants via silencing of genes involved in house-
keeping or parasitism [151,152]. Sindh et al. [153] utilized the RNAi to
achieve the resistance in A. thaliana by targeting the four parasitism-
related genes of sugar beet cyst nematode (Heterodera schachtii). Al-
though the complete resistance was not achieved but 23–64% reduction
in number of mature nematode females in different RNAi lines was
recorded. However, the Meloidogyne incognita induced gall formation in
soybean roots was successfully reduced through suppression of various
tyrosine phosphatase (TP) and mitochondrial stress-70 protein pre-
cursor (MSP) genes [154]. Moreover, disruption of post-transcriptional
gene silencing (PTGS) in Arabidopsis ago1 or ago2 mutants subsequently
minimized the infection M. incognita [155]. Further investigation clar-
ified that Arabidopsis miR159abc mutant showed lower susceptibility to
M. incognita, suggesting a role for the miR159 family in plant response
to nematode infections. Several miRNAs are reportedly involved in
plant-nematode interactions. For example, upon the infection of Het-
erodera schachtii in Arabidopsis, down-regulation of miR161, miR164,
miR167a, miR172c, miR396c, miR396a,b, and miR398a was observed
[156–158]. Investigation of soybean cyst nematode (SCN; Heterodera
glycines) infected plants revealed more than 100 miRNAs of 40 diverse
families for their comparative response upon the infection initiation.
Further analyses presented 20 differentially expressed miRNAs between
SCN resistant and susceptible soybean cultivars [159,160]. Recently,
Tian et al. [161], identified 60 miRNAs belonging to 25 families which
may have their active involvement in response to SCN infection. Be-
sides, nematode-induced miRNAs likely to participate in the establish-
ment and parasitism of feeding site respectively [157]. Over-expression
of nematode-induced miRNAs and silencing of their corresponding
targets, may offer significant information about plant-nematode para-
sitism, and grant crop plants with nematode resistance.

7. Conclusions and future prospects

Pathogens continuously threat global crop production. Recent pro-
gress in plant biology revealed significant miRNA cascades responding
against pathogens. But, miRNA-mediated plant immunity is, however,
incomplete and requires extensive research. In addition, investigations
based on miRNA-mediated processes in plant-pathogen interactions
have considerable implications in devising new strategies for disease

control and ultimately improve crop productivity. miRNA can be very
useful as biomarkers for disease resistance characteristics in breeding
programs. miRNA-mediated gene silencing has vital significance in
plant immunity. Although current understanding has already laid a
foundation for developing molecular tools for crop improvements yet
the molecular mechanisms of miRNA-mediated gene silencing in plants
need extensive elaboration and investigation. An in-depth investigation
is suggested regarding the miRNA processing procedures involving
biochemical enzymes and miRNA recruiting machinery. Additionally,
explanation of the molecular mechanisms of interactions between
plants and pathogens with particular reference to miRNAs will facilitate
us to get more benefits derived from the miRNA-mediated mechanism.
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